A compact source is important for various applications utilizing terahertz (THz) waves. In this paper, the recent progress in resonant-tunneling diode (RTD) THz oscillators, which are compact semiconductor THz sources, is reviewed, including principles and characteristics of oscillation, studies addressing high-frequency and high output power, a structure which can easily be fabricated, frequency tuning, spectral narrowing, different polarizations, and select applications. At present, fundamental oscillation up to 1.98 THz and output power of 0.7 mW at 1 THz by a large-scale array have been reported. For high-frequency and high output power, structures integrated with cylindrical and rectangular cavities have been proposed. Using oscillators integrated with varactor diodes and their arrays, wide electrical tuning of 400–900 GHz has been demonstrated. For spectral narrowing, a line width as narrow as 1 Hz has been obtained, through use of a phase-locked loop system with a frequency-tunable oscillator. Basic research for various applications—including imaging, spectroscopy, high-capacity wireless communication, and radar systems—of RTD oscillators has been carried out. Some recent results relating to these applications are discussed.