Gated integrating measurement method represents a widely used approach when fast, repetitive analogue signals are concerned. In this work a compact synchronized gated-integrator prototype has been realized and preliminary characterized. Front-end electronics is based on the mature high-precision switched-integrator transimpedance-amplifier IVC102 whose output is connected to a precision LT1911 inverting amplifier, whereas analogue-to-digital conversion, as well as timing control circuitry, are performed by a high-efficiency LPC845 microcontroller. Synchronizing signal detection with the external trigger generated in coincidence with a source, the proposed circuitry amplifies and integrates the signal only when the pulse is generated, displaying excellent performances in terms of linearity, sensitivity and signal-to-noise ratio. Hence, the proposed solution represents an affordable alternative to continuous-time regime measurement-techniques, usually adopted in radiation dosimetry where accuracy and sensitivity are strict requirements for treatment quality assurance.