Aiming at the needs of ultrasonic motor motion control, a new two-dimensional (2D) predictive control objective function is proposed. Different from the existing methods, the objective function consists of three terms, including the product of the control quantity and the error of the previous control process. Based on the objective function, the predictive iterative learning control (ILC) law is derived by using the design method of generalized predictive control (GPC) without specifying ILC law form in advance. An on-line identification method for model parameters is given to realize effective identification under a small amount of data circumstances, and therefore, the parameters of controller are adjusted adaptively according to the identification results. The proposed control method is validated both in simulation and experiment. The experimental results show that the proposed predictive iterative learning control strategy can obtain better control effect than GPC, and has more obvious characteristics of iterative learning control. It can maintain the expected performance under the condition of intermittent loading and replacing the motor. It presents strong robustness. INDEX TERMS Ultrasonic motor, iterative learning control, generalized predictive control, on-line identification.