A detailed understanding
of the local dynamics in ionic liquids
remains an important aspect in the design of new ionic liquids as
advanced functional fluids. Here, we use small-angle X-ray scattering
and quasi-elastic neutron spectroscopy to investigate the local structure
and dynamics in a model ionic liquid as a function of temperature
and pressure, with a particular focus on state points (
P
,
T
) where the macroscopic dynamics, i.e., conductivity,
is the same. Our results suggest that the initial step of ion transport
is a confined diffusion process, on the nanosecond timescale, where
the motion is restricted by a cage of nearest neighbors. This process
is invariant considering timescale, geometry, and the participation
ratio, at state points of constant conductivity, i.e., state points
of isoconductivity. The connection to the nearest-neighbor structure
is underlined by the invariance of the peak in the structure factor
corresponding to nearest-neighbor correlations. At shorter timescales,
picoseconds, two localized relaxation processes of the cation can
be observed, which are not directly linked to ion transport. However,
these processes also show invariance at isoconductivity. This points
to that the overall energy landscape in ionic liquids responds in
the same way to density changes and is mainly governed by the nearest-neighbor
interactions.