The diffusion properties of low-density non-porous silica glasses (expanded silica glasses) were researched with the aim of searching for the molecular structure of membrane materials intended for the effective separation of helium–neon gas mixtures. It has been shown on a large number (84) of computer models of such glasses that there are molecular structures of silica in which various helium and neon diffusion mechanisms are simultaneously implemented: superdiffusion for helium and subdiffusion for neon. This makes it possible to significantly (by 3–5 orders of magnitude) increase the helium permeability of such glasses at room temperature and maintain a high selectivity for the separation of helium and neon (at the level of 104–105) at the same time.