The high‐pressure behavior of non‐metal nitrides is of special interest for inorganic and theoretical chemistry as well as materials science, as these compounds feature intriguing elastic properties. The double nitride α‐BP3N6 was investigated by in situ single‐crystal X‐ray diffraction (XRD) upon cold compression to a maximum pressure of about 42 GPa, and its isothermal bulk modulus at ambient conditions was determined to be 146(6) GPa. At maximum pressure the sample was laser‐heated, which resulted in the formation of an unprecedented high‐pressure polymorph, β‐BP3N6. Its structure was elucidated by single‐crystal XRD, and can be described as a decoration of a distorted hexagonal close packing of N with B in tetrahedral and P in octahedral voids. Hence, β‐BP3N6 is the first nitride to contain PN6 octahedra, representing the much sought‐after proof of principle for sixfold N‐coordinated P that has been predicted for numerous high‐pressure phases of nitrides.