This work investigates the thermal stability of point defects in high-purity SiC. Electron paramagnetic resonance measurements made after Ar annealing between 600°C and 1700°C reveal changes in at least two defects, a carbon vacancy related center (V C ) and the shallow boron acceptor. Between 1000°C and 1400°C, the number of carbon vacancies decreased and the number of boron acceptors increased in about the same proportion. Above 1400°C, the concentration of B continued to grow, while the number of carbon vacancies fell below the detection limit. After the highest temperature anneal, the initial preannealed concentration of V C was restored by illumination with sub-bandgap 578-nm light. The effects of heat treatment between 1000°C and 1400°C are interpreted in terms of the charge exchange between a compensated B acceptor and V C . The observation of optically induced carbon vacancies after the final anneal suggests that they are thermally stable in these samples up to 1700°C.