Carbon fiber-reinforced plastics (CFRP), which are classified as functional resins, are rapidly replacing conventional materials because of their excellent properties. Typically, they have been used to fabricate components of airplanes or cars. In the field of medicine, the demand for micro-machined products manufactured with lathes is also increasing. However, owing to the significant tool wear caused by the carbon fiber, CFRP machining can result in burrs and inaccuracies in the finished product. The tool wear caused by carbon fiber must be reduced to ensure high dimensional accuracy. In this study, the possibility of combining conventional turning with electric current or electrical discharge machining was explored.