An optimal single-photon source should deterministically deliver one and only one photon at a time, with no trade-off between the source's efficiency and the photon indistinguishability. However, all reported solid-state sources of indistinguishable single photons had to rely on polarization filtering which reduced the efficiency by 50%, which fundamentally limited the scaling of photonic quantum technologies. Here, we overcome this final long-standing challenge by coherently driving quantum dots deterministically coupled to polarization-selective Purcell microcavities-two examples are narrowband, elliptical micropillars and broadband, elliptical Bragg gratings. A polarization-orthogonal excitation-collection scheme is designed to minimize the polarization-filtering loss under resonant excitation. We demonstrate a polarized single-photon efficiency of 0.60(2), a single-photon purity of 0.991(3), and an indistinguishability of 0.973(5). Our work provides promising solutions for truly optimal single-photon sources combining near-unity indistinguishability and near-unity system efficiency simultaneously.Single photons are appealing candidates for quantum communications 1,2 , quantumenhanced metrology 3,4 and quantum computing 5,6 . In view of the quantum information applications, the single photons are required to be controllably prepared with a high efficiency into a given quantum state. Specifically, the single photons should possess the same polarization, spatial mode, and transform-limited spectro-temporal profile for a high-visibility Hong-Ou-Mandel-type quantum interference 1,7 .Self-assembled quantum dots show so far the highest quantum efficiency among solid-state quantum emitters and thus can potentially serve as an ideal single-photon source 8-15 . There has been encouraging progress in recent years in developing highperformance single-photon sources 11 . Pulsed resonant excitation on single quantum dots has been developed to eliminate dephasing and time jitter, which created single photons with near-unity indistinguishability 15 . Further, by combining the resonant excitation with Purcell-enhanced micropillar 16,17 or photonic crystals 18,19 , the generated transform-limited 20,21 single photons have been efficiently extracted out of the bulk and funneled into a single mode at far field. Despite the recent progress 16-22 , the experimentally achieved polarized-single-photon efficiency (defined as the number of single-polarized photons extracted from the bulk semiconductor and collected by the first lens per pumping pulse) is ~33% in ref. 16 and ~15% in ref. 17, still fell short of the minimally required efficiency of 50% for boson sampling to show computational advantage to classical algorithms 23 , and was below the efficiency threshold of 67% for photon-loss-tolerant encoding in cluster-state models of optical quantum computing 24 . It should be noted that a <50% single-photon efficiency would render nearly all linear optical quantum computing schemes 1,5 not scalable.The indistinguishable single-photon...