Cerebral aneurysms are pathological focal evaginations of the arterial wall at and around the junctions of the circle of Willis. Their tenuous walls predispose aneurysms to leak or rupture leading to hemorrhagic strokes with high morbidity and mortality rates. The endovascular treatment of cerebral aneurysms currently includes the implantation of fine-mesh stents, called flow diverters, within the parent artery bearing the aneurysm. By mitigating flow velocities within the aneurysmal sac, the devices preferentially induce thrombus formation in the aneurysm within hours to days. In response to the foreign implant, an endothelialized arterial layer covers the luminal surface of the device over a period of days to months. Organization of the intraneurysmal thrombus leads to resorption and shrinkage of the aneurysm wall and contents, eventually leading to beneficial remodeling of the pathological site to a near-physiological state. The devices' primary function of reducing flow activity within aneurysms is corollary to their mesh structure. Complete specification of the device mesh structure, or alternately device permeability, necessarily involves the quantification of two variables commonly used to characterize porous media-mesh porosity and mesh pore density. We evaluated the flow alteration induced by five commercial neurovascular devices of varying porosity and pore density (stents: Neuroform, Enterprise, and LVIS; flow diverters: Pipeline and FRED) in an idealized sidewall aneurysm model. As can be expected in such a model, all devices substantially reduced intraneurysmal kinetic energy as compared to the nonstented case with the coarse-mesh stents inducing a 65-80% reduction whereas the fine-mesh flow diverters induced a near-complete flow stagnation (∼98% reduction). We also note a trend toward greater device efficacy (lower intraneurysmal flow) with decreasing device porosity and increasing device pore density. Several such flow studies have been and are being conducted in idealized as well as patient-derived geometries with the overarching goals of improving device design, facilitating treatment planning (what is the optimal device for a specific aneurysm), and predicting treatment outcome (will a specific aneurysm treated with a specific device successfully occlude over the long term). While the results are generally encouraging, there is poor standardization of study variables between different research groups, and any consensus will only be reached after standardized studies are conducted on collectively large datasets. Biochemical variables may have to be incorporated into these studies to maximize predictive values.