One of the best magneto-optical claddings for optical isolators in photonic integrated circuits is sputter deposited cerium-doped terbium iron garnet (Ce:TbIG) which has a large Faraday rotation (≈−3500° cm −1 at 1550 nm).
Near-ideal stoichiometryCe Tb Fe 0.57 + + = = of Ce 0.5 Tb 2.5 Fe 4.75 O 12 is found to have a 44 nm magnetic dead layer that can impede the interaction of propagating modes with garnet claddings. The effective anisotropy of Ce:TbIG on Si is also important, but calculations using bulk thermal mismatch overestimate the effective anisotropy. X-ray diffraction measurements yield highly accurate measurements of strain that show anisotropy favors an in-plane magnetization in agreement with the positive magnetostriction of Ce:TbIG. Upon doping TbIG with Ce, a slight decrease in compensation temperature occurs which points to preferential rare-earth occupation in dodecahedral sites and an absence of cation redistribution between different lattice sites. The high Faraday rotation, large remanent ratio, large coercivity, and preferential in-plane magnetization enable Ce:TbIG to be an in-plane latched garnet, immune to stray fields with magnetization collinear to direction of light propagation.