2009 IEEE International Conference on Data Mining Workshops 2009
DOI: 10.1109/icdmw.2009.59
|View full text |Cite
|
Sign up to set email alerts
|

High Quality True-Positive Prediction for Fiscal Fraud Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
3

Year Published

2009
2009
2022
2022

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 12 publications
0
4
0
3
Order By: Relevance
“…The authors examine C5.0 algorithm for learning decision tress to build a classification model for detecting tax evasion in Italy. Other supervised machine learning approaches for detecting fraudulent tax behavior investigated in the literature include random forests (Mittal et al, 2018), rule-based classification (Basta et al, 2009) and Bayesian networks (da Silva et al, 2016).…”
Section: Related Work and Our Contributionsmentioning
confidence: 99%
See 1 more Smart Citation
“…The authors examine C5.0 algorithm for learning decision tress to build a classification model for detecting tax evasion in Italy. Other supervised machine learning approaches for detecting fraudulent tax behavior investigated in the literature include random forests (Mittal et al, 2018), rule-based classification (Basta et al, 2009) and Bayesian networks (da Silva et al, 2016).…”
Section: Related Work and Our Contributionsmentioning
confidence: 99%
“…The application of unsupervised learning is mostly relying on various anomaly detection algorithms. These include various supervised, semi-supervised and unsupervised machine learning methods, including decision trees, spectral clustering methods, neural networks, graph-based methods, etc, for example see Wu et al (2012), Matos et al (2015), Bonchi et al (1999), (Basta et al, 2009), (da Silva et al, 2016), Castellón González and Velásquez (2013), Tian et al (2016), de Roux et al (2018), Mehta et al (2020). However, most existing anomaly detection studies focus on devising accurate detection models only, ignoring the capability of providing explanation of the identified anoma-lies (Pang et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…An association rule technique to identify VAT evasion tax reports is applied in [33]. Other rule-based approaches are proposed for detecting fraudulent VAT credit claims [34] and for the identification of frequent fraud patterns in the Brasilian fiscal environment [35]. Some tax administrations use clustering techniques to detect groups of taxpayers characterized by non compliance behavior [36], [37].…”
Section: B Data Mining and Machine Learning Approachesmentioning
confidence: 99%
“…De ellas en un 42,81% hubo conformidad del interesado y en un 34,76% se instruyó un expediente sancionador. En Basta et al (2009), en un estudio transversal de las administraciones tributarias se ofrece una cifra similar, el 85,29%. Dado que el control de los tributos exige muchos recursos, el porcentaje de los contribuyentes controlados es bajo.…”
Section: El Problema Tributariounclassified
“…La mayoría de las administraciones tributarias avanzadas han publicado los resultados de proyectos significativos realizados orientado al control del fraude: control del fraude en IVA (Vanhoeyveld et al, 2020), uso indebido de créditos tributarios en Italia (Agenzia delle Entrate, 2007;Andini et al,2018;Basta et al, 2009), uso de minería de datos y redes neuronales para el control tributario en Finlandia (Titan, 2012), el uso de árboles de clasificación en EE.UU (Murthy, 1988), control del fraude a la Seguridad Social en Bélgica (Baesen et al, 2015), y el control de los impuestos directos en Brasil (Matos et al, 2016).…”
Section: Uso De ML En El Control Del Fraude Tributariounclassified