Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.