High-Resolution Bathymetry by Deep-Learning Based Point Cloud Upsampling
Naoya Irisawa,
Masaaki Iiyama
Abstract:Gridded bathymetric data are often used to understand seafloor topography; however, highresolution data are rare. To obtain high-resolution gridded bathymetric data, the observations from which the data are derived must be densely measured. However, this process is time consuming and expensive. In this study, we propose a method to obtain dense bathymetric data from sparse observations by treating the observed data as a 3D point cloud and applying a deep-learning-based point-cloud upsampling technique. The ups… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.