Fluorescein, one of the brightest fluorescent dye molecules, is a widely used fluorophore for various applications from biomedicine to industry. The dianionic form of fluorescein is responsible for its high fluorescence quantum yield. Interestingly, the molecule was found to be nonfluorescent in the gas phase. This characteristic is attributed to the photodetachment process, which out-competes the fluorescence emission in the gas phase. In this work, we show that the calculated vertical and adiabatic detachment energies of fluorescein dianion in the gas and solvent phases account for the drastic differences observed in their fluorescence characteristics. The functional dependence of these detachment energies on the dianion’s microsolvation was systematically investigated. The performance of different solvent models was also assessed. The higher thermodynamic stability of fluorescein dianion over the monoanion doublet in the solvent phase plays a crucial role in quenching photodetachment and activating the radiative channel with a high fluorescence quantum yield.