We provide a survey of fundamental aspects of rotation-vibration spectra. A basic understanding of the concepts is obtained from a detailed discussion of rotation-vibration spectra of diatomic molecules with only one vibrational degree of freedom. This includes approximate and exact separation of rotation and vibration, effective spectroscopic constants, the effects of nuclear spin and statistics, and transition probabilities derived from the form of the electric dipole moment function. The underlying assumptions and accuracy of the determination of molecular structure from spectra are discussed. Polyatomic molecules show many interacting vibrational degrees of freedom. Energy levels and spectra are discussed on the basis of normal coordinates and effective Hamiltonians of interacting levels in Fermi resonance, and in more complex resonance polyads arising from anharmonic potential functions. The resulting time-dependent dynamics of intramolecular energy flow is introduced as well. Effective Hamiltonians for interacting rotation-vibration levels are derived and applied to the practical treatment of complex spectra. Currently available computer programs aiding assignment and analysis are outlined.