A fast calculation method for a full parallax high-resolution hologram is proposed based on elemental light field image (EI) rendering. A 3D object located near the holographic plane is firstly rendered as multiple EIs with a pinhole array. Each EI is interpolated and multiplied by a divergent sphere wave and interfered with a reference wave to form a hogel. Parallel acceleration is used to calculate the high-resolution hologram because the calculation of each hogel is independent. A high-resolution hologram with the resolution of 200,000 × 200,000 pixels is calculated within only eight minutes. Full parallax high-resolution 3D displays are realized by optical reconstructions.