Abstract. PM2.5, a complex mixture with diverse chemical components, exerts significant impacts on the environment, human health, and climate change. However, precisely describing spatiotemporal variations of PM2.5 chemical components remains a difficulty. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system (NAQPMS-PDAF v1.0) that is suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical DA system (NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO42-, NO3-, NH4+, OC, and EC). NAQPMS-PDAF v2.0 improves upon v1.0 by effectively handing and balancing stability and nonlinearity in chemical DA, which is achieved by incorporating the non-Gaussian-distribution ensemble perturbation and hybrid Localized Kalman-Nonlinear Ensemble Transform Filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate that NAQPMS-PDAF v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and v1.0. A one-month DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with observations, especially reducing the underestimation of NH4+ and NO3- and the overestimation of SO42-, OC, and EC. In particular, the CORR values for NO3-, OC, and EC are above 0.96, and R2 values are above 0.93. NAQPMS-PDAF v2.0 also demonstrates superior spatiotemporal interpretation, with most DA sites showing improvements of over 50 %–200 % in CORR and over 50 %–90 % in RMSE for the five chemical components. Compared to the poor performance in global reanalysis dataset (CORR: 0.42–0.55, RMSE: 4.51–12.27 µg/m3) and NAQPMS-PDAF v1.0 (CORR: 0.35–0.98, RMSE: 2.46–15.50 µg/m3), NAQPMS-PDAF v2.0 has the highest CORR of 0.86–0.99 and the lowest RMSE of 0.14–3.18 µg/m3. The uncertainties in ensemble DA are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical component studies.