The effect of macromolecular crowding on the structure, dynamics, and reactivity of biomolecules is well-established and the relevant research has been extensively reviewed. Herein, we focus our discussion on crowding effects arising from small co-solvent molecules and densely packed surface conditions. In addition, we highlight recent efforts that capitalize on the excluded volume effect for various tailored biochemical and biophysical applications. Specifically, we discuss how a targeted increase in local mass density can be exploited to gain insight into the folding dynamics of the protein of interest and how confinement via reverse micelles can be used to study a range of biophysical questions, from protein hydration dynamics to amyloid formation.