A simple NMR experiment capable of providing well resolved spectra under conditions where either radiation damping or static magnetic field inhomogeneity would broaden otherwise high-resolution NMR spectra is introduced. The approach involves using a strong pulsed magnetic field gradient and a selective radio-frequency pulse to encode a predetermined noise pattern into the spatial distribution of magnetization. Following readout in a much smaller field gradient, the noise sequence may be deconvolved from the acquired data and a high-resolution spectrum is obtained, eliminating the effects of either radiation damping or the static field inhomogeneity. In the presence of field inhomogeneity a field map is also obtained from the same single transient. A quasi-two-dimensional version of the experiment eliminates the need for deconvolution and produces improved results with simplified processing, but without requiring a full two-dimensional experiment. Example spectra are shown for both radiation damping and one-dimensional field inhomogeneity with improvement in linewidths of more than a factor of 40.