Gas-surface interactions at the Moon, Mercury and other massive planetary bodies constitute, alongside production and escape, an essential element of the physics of their gravitationally bound exospheres. From condensation and accumulation of exospheric species onto the surface in response to diurnal and seasonal changes of surface temperature, to thermal accommodation, diffusion and ultimate escape of these species from the regolith back into space, surface-interactions have a drastic impact on exospheric composition, structure and dynamics. The study of this interaction at planetary bodies combines exospheric modeling and observations with a consideration of fundamental physics and laboratory experimentation in surface science. With a growing body of earth-based and spacecraft observational data, and a renewed focus on lunar missions and exploration, the connection between the exospheres and surfaces of planetary bodies is an area of active and growing research, with advances being made on problems such as topographical and epiregolith thermal effects on volatile cold trapping, among others. In this paper we review current understanding, latest developments, outstanding issues and future directions on the topic of exosphere-surface interactions at the Moon, Mercury and elsewhere.