Boi1 and Boi2 are closely related yeast scaffolding proteins, either of which can perform an essential function. Previous studies have suggested a role in cell polarity, interacting with lipids, components of the late secretory pathway, and actin nucleators. We report detailed studies of their localization, dynamics, and the generation and characterization of conditional mutants. Boi1/2 are present on the plasma membrane in dynamic patches, then at the bud neck during cytokinesis. These distributions are unaffected by perturbation of the actin cytoskeleton or the secretory pathway. We identify two critical aromatic residues, present in both Boi1 and Boi2, in the essential C-terminal PH domain, that cause temperature sensitive growth resulting in defects in polarized growth leading to cell lysis. The scaffolding protein, Bem1, colocalizes with Boi1 in patches at the growing bud, and at the bud neck, the latter requiring the N-terminal SH3 domain of Boi1p. Loss of function of Boi1-SH3 domain renders Bem1 essential which can be fully replaced by a fusion of the SH3b and PB1 domains of Bem1. Thus, the two essential functions of the Boi1/2/Bem1 proteins can be satisfied by Bem1-SH3b-PB1 and Boi1-PH. Generation and characterization of conditional mutations in the essential function of Bem1 reveal a slow onset of defects in polarized growth, which is difficult to define a specific initial defect. This study provides more details into the functions of Boi1/2 and their relationship with Bem1, and presents the generation of conditional mutants that will be useful for future genetic analysis.