In this article, we introduce correlation technologies both at RF/mmWave and baseband frequencies. At RF and mmWave frequencies, power-spectra and energy-spectra metrics are introduced for measuring the power-density of mobile devices and systems. New ASIC-embedded smart connectors are developed for bringing correlation-based signal processing close to antenna modules. At baseband frequencies, DSP-based convolutional accelerators are proposed for fast and accurate measurement of EVM (error vector magnitude) using correlation technologies. Porting of the DSP-based convolutional accelerators into advanced fully depleted silicon-on-insulator (FDSOI)-based ASIC platforms for co-integration with adaptive RF/mmWave front-end modules will enable real-time extraction of auto-correlation and cross-correlation functions of stochastic signals. Perspectives for optically synchronized interferometric-correlation technologies are drawn for accurate measurements in noisy environments of stochastic EM fields using power-spectra and energy-spectra metrics. Adoption of correlation technologies will foster new paradigms relative to interactions of humans with smart devices and systems in randomly fluctuating environments. The resulting new paradigms will open new possibilities in communication theory for properly combining and reconciling information signal theory (Shannon information-based entropy) and physical information theory (statistical-physics-based entropy) into a unified framework.