Background:The Po, Pb, Hg, and Pt region is known for the presence of coexisting structures that correspond to different particle-hole configurations in the shell model language or equivalently to nuclear shapes with different deformation. Purpose: We intend to study the configuration mixing phenomenon in the Hg isotopes and to understand how different observables are influenced by it. Method: We study in detail a long chain of mercury isotopes, Hg, using the interacting boson model with configuration mixing. The parameters of the Hamiltonians are fixed through a least-squares fit to the known energies and absolute B(E2) transition rates of states up to 3 MeV. Results: We obtained the IBM-CM Hamiltonians and we calculate excitation energies, B(E2)'s, quadrupole shape invariants, wave functions, isotopic shifts, and mean-field energy surfaces.
Conclusions:We obtain a fairly good agreement with the experimental data for all the studied observables and we conclude that the Hamiltonian and the states we obtain constitute a good approximation to the Hg isotopes.