Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUND: The amount of published data related to peripheral nerve blast injuries is limited. AIM: The study was aimed at determining the accuracy and sensitivity and assessing the specificity of ultrasound in the diagnosis of peripheral nerve injuries in mine blast trauma. METHODS: A total of 159 patients (274 peripheral nerves) were examined. Ultrasound was performed according to the standard technique using a HI VISION Avius HITACHI scanner with an EUP-L74M linear transducer (a frequency range of 513 MHz) and a preset musculoskeletal system ultrasound program. The duration of nerve injuries ranged from 2 to 273 days. All patients were men aged 20 to 48 years. Peripheral nerves were damaged as a result of mine blast trauma. Statistical analysis was used to assess sensitivity, specificity, and diagnostic accuracy. These characteristics were calculated according to the qualitative assessment of surgical intervention, the results of conservative treatment, and the method under study (ultrasound). RESULTS: A total of 274 damaged peripheral nerves were examined. The Group 1 included 93 (34%) nerves that required surgical intervention. In Group 2, consisting of 181 (66%) nerves, conservative treatment was used. Most of the nerves (47 [51%]) in Group 1 were damaged due to the compression effects of scarring in the surrounding tissues. Seventeen (18%) partial violations of the anatomical integrity of nerves with the formation of intramural and marginal neuromas were detected. Multiple and single nerve injuries were observed in 95 (59.7%) and 64 people (40.3%), respectively. Peripheral nerves of the upper extremities were damaged more frequently (185 [67.5%]), whereas nerves of the lower extremities were damaged in 89 (32.5%) cases. Ultrasound showed an increase in the cross-sectional area of nerves, blurred contours, decreased echogenicity, and changes in the bundle structure up to the complete absence of differentiation of individual fascioculi. The formation of neuromas was observed in complete and partial nerve ruptures. All 93 nerves in Group 1 underwent surgical intervention, particularly, external neurolysis (32 [34%]), internal neurolysis (15 [16%]), nerve suture (15 [16%]), excision of neuroma followed by microsurgical epineural suture (18 [19%]), and autoneural plasty (11 [12%]). In 2 (3%) cases, a decision was made to abstain from plasty and perform a tendon transposition due to a pronounced diastasis. All patients of Group 2 were shown to have a wait-and-see approach, and conservative therapy was prescribed. In 179 (99%) cases, complete recovery of sensory and motor activity was observed within 21 days. In 2 (1%) patients, a repeated ultrasound was performed due to no effect of treatment. Compression by scar tissues was revealed, and surgical intervention was made. CONCLUSIONS: In mine-explosive impact, ultrasound is the leading method for diagnosing peripheral nerve injuries. Ultrasound with sensitivity of 97.8% and specificity of 98.8% reveals lesions for which surgical treatment is indicated. The diagnostic accuracy is 98.5%.
BACKGROUND: The amount of published data related to peripheral nerve blast injuries is limited. AIM: The study was aimed at determining the accuracy and sensitivity and assessing the specificity of ultrasound in the diagnosis of peripheral nerve injuries in mine blast trauma. METHODS: A total of 159 patients (274 peripheral nerves) were examined. Ultrasound was performed according to the standard technique using a HI VISION Avius HITACHI scanner with an EUP-L74M linear transducer (a frequency range of 513 MHz) and a preset musculoskeletal system ultrasound program. The duration of nerve injuries ranged from 2 to 273 days. All patients were men aged 20 to 48 years. Peripheral nerves were damaged as a result of mine blast trauma. Statistical analysis was used to assess sensitivity, specificity, and diagnostic accuracy. These characteristics were calculated according to the qualitative assessment of surgical intervention, the results of conservative treatment, and the method under study (ultrasound). RESULTS: A total of 274 damaged peripheral nerves were examined. The Group 1 included 93 (34%) nerves that required surgical intervention. In Group 2, consisting of 181 (66%) nerves, conservative treatment was used. Most of the nerves (47 [51%]) in Group 1 were damaged due to the compression effects of scarring in the surrounding tissues. Seventeen (18%) partial violations of the anatomical integrity of nerves with the formation of intramural and marginal neuromas were detected. Multiple and single nerve injuries were observed in 95 (59.7%) and 64 people (40.3%), respectively. Peripheral nerves of the upper extremities were damaged more frequently (185 [67.5%]), whereas nerves of the lower extremities were damaged in 89 (32.5%) cases. Ultrasound showed an increase in the cross-sectional area of nerves, blurred contours, decreased echogenicity, and changes in the bundle structure up to the complete absence of differentiation of individual fascioculi. The formation of neuromas was observed in complete and partial nerve ruptures. All 93 nerves in Group 1 underwent surgical intervention, particularly, external neurolysis (32 [34%]), internal neurolysis (15 [16%]), nerve suture (15 [16%]), excision of neuroma followed by microsurgical epineural suture (18 [19%]), and autoneural plasty (11 [12%]). In 2 (3%) cases, a decision was made to abstain from plasty and perform a tendon transposition due to a pronounced diastasis. All patients of Group 2 were shown to have a wait-and-see approach, and conservative therapy was prescribed. In 179 (99%) cases, complete recovery of sensory and motor activity was observed within 21 days. In 2 (1%) patients, a repeated ultrasound was performed due to no effect of treatment. Compression by scar tissues was revealed, and surgical intervention was made. CONCLUSIONS: In mine-explosive impact, ultrasound is the leading method for diagnosing peripheral nerve injuries. Ultrasound with sensitivity of 97.8% and specificity of 98.8% reveals lesions for which surgical treatment is indicated. The diagnostic accuracy is 98.5%.
BACKGROUND: Traumatic peripheral nerve damage is a significant clinical and social problem, which is characterized by a high level of disability in young patients. AIM: To assess the diagnostic efficiency of ultrasound in the diagnosis of peripheral nerve damage in combat trauma. METHODS: A total of 163 patients (362 peripheral nerves) were examined. The duration of traumatic nerve damage was 2273 days. All patients were men aged 2048 years. Ultrasound was performed with 717 MHz linear transducers on an ACUSSON S2000 device using standard technique in B-mode, in longitudinal and transverse scanning planes, with the use of Doppler techniques. Statistical analysis was conducted to assess diagnostic efficiency. Calculation of operational (sensitivity and specificity) and integral (accuracy) characteristics was performed by the qualitative assessment of the reference method (surgical intervention) and the method under study (ultrasound). RESULTS: Peripheral nerve damage resulted from combat trauma. In 120 (73.6%) cases, injuries of the limbs were accompanied by injuries of the osteoarticular apparatus and vessels. A total of 274 (75.7%) nerves had signs of traumatic damage. Multiple nerve injuries were observed in 95 (58.3%) people. Nerves of the upper extremities were damaged more frequently (185 [67.5%]) compared to nerves of the lower extremities (89 [32.5%]). Contusional structural changes were observed in 181 (66%) nerves. Impairment of anatomical integrity was diagnosed in 46 (16.8%) nerves, while complete impairment was found in 29 (10.6%) cases with the presence of diastasis between the nerve ends. Early after injury, a wound canal and hematomas were visualized near the nerve. In 4 cases, a foreign body of metallic density was visualized in the nerve sheath. After 3 weeks from the moment of injury, terminal neuromas were observed. The neuroma sizes for the proximal and distal ends were 0.50.3 to 1.60.6 cm and 0.40.2 to 1.30.6 cm (avascular), respectively. Adjacent sections of the nerve over 35 cm were thickened and characterized by echo structure, however, with thickening of all fasciculi and blood flow observed along the periphery of the nerve. Marginal nerve damage was observed in 17 (6.2%) people. In case of marginal neuroma, a significant nerve thickening of 1.43.2 times over a short distance (from 0.4 cm to 1.5 cm) with loss of bundle differentiation of the part of the nerve, pronounced decrease in echogenicity, and absence of Doppler signal was detected. Nerve compression in 47 cases (17.1%) was accompanied by 1.22.3 times thickening of nerve trunks, indistinct contours, decreased echogenicity, and significant changes in the nerve structure. Compression was due to cicatricial changes, hematomas, foreign bodies, bone fragments, and in 2 cases spokes from external fixation devices. A total of 106 patients underwent surgery. CONCLUSIONS: The ultrasound sensitivity and specificity were 96% and 67%, respectively. The peculiarities of the examination included extensive soft tissue defects and external fixation devices, which significantly complicated the examination. The diagnostic accuracy was 91%. A pronounced cicatricial process (70%) was the main cause of false-positive (6.6%) and false-negative (2.8%) results.
The peripheral nervous system injuries can lead to long-term or total disability of the patient. The article presents the classification of peripheral nervous system injuries, and clinical picture. Such methods of instrumental diagnostics as stimulation electroneuromyography, needle electromyography, ultrasound diagnostics, magnetic resonance imaging are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.