This study examines a numerical method to simulate the production of novel multi-material metal-composite components, where an additive-manufactured cellular solid is infiltrated by a sheet molding compound (SMC) in a single-step compression molding operation. A single-fiber numerical approach is adopted to predict microstructural changes, such as fiber orientation, fiber-matrix separation, and fiber volume content variations during molding. The accuracy of the numerical predictions is confirmed by physical samples using micro-computed tomography and optical microscopy investigations at both the qualitative and quantitative scales. From optical microscopy observations, there emerged a positive correlation between experimental outcomes and simulation results, accurately capturing fiber swirling, wrinkling, and draping that occurred during molding. At a quantitative scale, a 0.6% mismatch was observed when void volume and unfilled areas were compared, as measured by micro-computed tomography and numerical simulation.