Bladder cancer (BC) is a serious malignancy worldwide due to its distant metastasis and high recurrence rates. Increasing evidence has indicated that dysregulated long non-coding RNAs (lncRNAs) are involved in tumorigenesis and progression in multiple malignancies. However, their clinical significances, biological functions and molecular mechanisms in BC remain poorly understood. Hence, the present study investigated the expression profile of lncRNAs and mRNAs in five BC tissues and the corresponding adjacent normal specimens using high-throughput RNA sequencing (RNA-seq). A total of 103 differentially expressed (DE) lncRNAs were identified, including 35 upregulated and 68 downregulated ones in BC tissues. Similarly, a total of 2,756 DE-mRNAs were detected, including 1,467 upregulated and 1,289 downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, and lncRNA-miRNA-mRNA network analyses suggested that these dysregulated lncRNAs are potentially implicated in the onset and progression of BC. Subsequently, four lncRNAs (upregulated ENST00000433108; downregulated ENST00000598996, ENST00000524265 and ENST00000398461) and two mRNAs (upregulated CCNB1 and CDK1) in 64 pairs of BC and adjacent normal tissues and four BC cell lines were detected using reverse transcription-quantitative PCR and these results were consistent with the sequencing data. Additionally, Fisher's exact test, Kaplan-Meier plots, and Cox regression analyses were used for elucidating the clinical values of ENST00000598996 and ENST00000524265. Furthermore, a receiver operating characteristic curve was constructed to assess their diagnostic values. The low expression level of ENST00000598996 and ENST00000524265 was correlated with unfavorable clinicopathological parameters, and shorter progression-free and overall survival time, whereas, ENST00000433108 was not associated with either. The in vitro functional experiments also revealed that the overexpression of ENST00000598996 and ENST00000524265 decreased the proliferation, migration, and invasion abilities of BC cells. Collectively, the results of the present study provide a novel landscape of lncRNA and mRNA expression profiles in BC. In addition, the results also indicated that ENST00000598996 and ENST00000524265 may serve as tumor suppressors, potential diagnostic biomarkers and prognostic predictors for patients with BC.