A pulse is generated when the heart pumps blood into the arterial system. The heart pumps blood only when it contracts, not when it relaxes; therefore, blood enters the arterial system in a cyclical form. Artery beating is visible in some parts of the body surface, such as the radial artery of the wrist. This paper mainly uses the feature in which near-infrared spectroscopy penetrates skin to construct a non-invasive measurement system that can measure small vibration in the subcutaneous tissue of the human body, and then uses it for the pulse measurement. This measurement system uses the optical moiré principle, together with the fringe displacement made by small vibration in the subcutaneous tissue, and an image analysis program to calculate the height variation from small vibrations in the subcutaneous tissue. It completes a measurement system that records height variation with time, and that together with a fast Fourier transform (FFT) program, they can convert the pulse waveform generated by vibration (time-amplitude) to heartbeat frequency (frequency-amplitude). This is a new and non-invasive medical assistance system for measuring the pulse of the human body, with the advantages of being simple, fast, safe and objective.