Chiral BIC can reach ultrahigh quality factors (Q-factor) based on its asymmetry, with broken mirror symmetries and in-plane inversion. Only by in-plane structural perturbation can chiral quasi-BIC (q-BIC) appear, so it is much more realizable and reasonable for the manufacturers in practical productions and fabrications considering the technology and means that are available. In this paper, we design a new dielectric metasurface employing H-shaped silica meta-atoms in the lattice, which is symmetrical in structure, obtaining chiral BIC with ultrahigh Q-factor (exceeding 105). In this process, we change the length of the limbs of the structure to observe the specific BICs. Previous scholars have focused on near-infrared-wavelength bands, while we concentrate on the terahertz wavelength band (0.8–1 THz). We found that there is more than one BIC, thus realizing multiple BICs in the same structure; all of them exhibit excellent circular dichroism (CD) (the maximum value of CD is up to 0.8127) for reflectance and transmittance, which provides significant and unique guidance for the design of multi-sensors. Meanwhile, we performed temperature sensing with chiral BIC; the sensitivity for temperature sensing can reach 13.5 nm/°C, which exhibits high accuracy in measuring temperature. As a consequence, the result proposed in this study will make some contributions to advanced optical imaging, chiral sensors with high frequency and spectral resolution, optical monitoring of environmental water quality, multiple sensors, temperature sensing, biosensing, substance inspection and ambient monitoring and other relevant optical applications.