Intrinsic, boron (B)-doped, and phosphorus (P)-doped silicon nanocrystals (Si NCs) formed from an excess Si concentration of 40 at. % were investigated to study their structural, optical, and electrical properties. Atom probe tomography (APT) revealed that the size and arrangement of Si NCs were different in each sample. A strong blue shift in photoluminescence spectra for the intrinsic and B-doped Si NCs was correlated with the volume fraction of small Si NCs. The lower resistivity of the B-doped sample than the P-doped one was explained by the percolation of Si NCs through the film.