Interferometric synthetic aperture radar (InSAR) enables us to obtain precipitable water vapor (PWV) maps with high spatial resolution through the phase difference caused by refraction in the atmosphere. Although previous studies have evaluated the error level of InSARPWV observations, they validated it only with C-band InSARPWV observations. Since ionospheric disturbance seriously contaminates the InSAR phase in the case of the lower-frequency SAR system, it is necessary for a PWV error level evaluation correcting the ionospheric effect appropriately if we use lower-frequency SAR systems, such as the Advanced Land Observing Satellite-2 (ALOS-2). In this paper, we evaluated the error level of the L-band InSARPWV observation obtained from ALOS-2 data covering four areas in Japan. We compared the InSAR observations with global navigation satellite system (GNSS) atmospheric observations and estimated the L-band InSARPWV error value by utilizing the error propagation theory. As a result, the L-band InSARPWV absolute error reached 2.83 mm, which was comparable to traditional PWV observations. Moreover, we investigated the impacts of the seasonality, the interferometric coherence, and the height dependence on the PWV observation accuracy in InSAR.