We propose a superimposing interferogram method to enhance the sensitivity and interference definition of spatial-phase-shift interferometers. The proposed method uses a multi-slit array as a redesigned field stop for the spatial-phase-shift interferometer. The widths of the apertural and blocked areas correspond to half the wavelength of the fringe pattern on the imaging plane and determine the wavelength that improves the interference definition while eliminating those wavelengths that worsen it, thus improving the interference definition of the interferogram. Additionally, to improve the interferometer’s sensitivity, several apertural areas were aligned to increase the amount of incident light. We performed spectroscopic measurements and confirmed improvements in both the sensitivity and the interference definition using a prototype of a bean-sized mid-infrared spectroscopic imager based on a one-shot Fourier spectroscope and a prototype multi-slit array. Although mid-infrared light is absorbed well by water and its intensity is thus weak for detection using the array sensors of cameras, mid-infrared spectroscopic imagers that incorporate our proposed method can be used for biomedical measurements of samples containing water.