Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The combined flow physics of several canonical flow configurations is experimentally studied. Here, we analyze an array of jets issuing into a crossflow, then immediately navigating past an array of cylinders. This is achieved with a 2 × 3 triangular pattern of jets and symmetric cylinders at three jets to crossflow velocity ratios, enabling near-complete optical access of each jet, with velocities measured by time-resolved particle image velocimetry. Jet trajectories reveal that each configuration adheres to a power-law trend and that greater penetration is achieved by the downstream and confined jets compared to the more conventional upstream one. Recirculation regions of the upstream and downstream jets are nearly independent, with the confined jet encompassing regions of overlap with both. Turbulent statistics reveal the influence of geometric placement and velocity ratio on the time-averaged velocity, anisotropy, and Reynolds stresses incurred by each jet. Galilean decomposition utilizes a supplemental crossflow-only velocity field to delineate the influence of each jet's low- and high-pressure regions on the otherwise uniform stream. Proper orthogonal decomposition suggests that increased jet penetration decreases the number of modes required for truncation in the investigated spanwise plane. Vortex identification algorithms are applied to the reconstructed flow fields, reaffirming that with increasing velocity ratio, the jets generate vortices of their own in similar statistical formations as the cylinders. This investigation provides a foundation to aid future modeling efforts toward characterizing flow physics of importance in designing and passively controlling transverse jets with varying blockage proximities in a crossflow.
The combined flow physics of several canonical flow configurations is experimentally studied. Here, we analyze an array of jets issuing into a crossflow, then immediately navigating past an array of cylinders. This is achieved with a 2 × 3 triangular pattern of jets and symmetric cylinders at three jets to crossflow velocity ratios, enabling near-complete optical access of each jet, with velocities measured by time-resolved particle image velocimetry. Jet trajectories reveal that each configuration adheres to a power-law trend and that greater penetration is achieved by the downstream and confined jets compared to the more conventional upstream one. Recirculation regions of the upstream and downstream jets are nearly independent, with the confined jet encompassing regions of overlap with both. Turbulent statistics reveal the influence of geometric placement and velocity ratio on the time-averaged velocity, anisotropy, and Reynolds stresses incurred by each jet. Galilean decomposition utilizes a supplemental crossflow-only velocity field to delineate the influence of each jet's low- and high-pressure regions on the otherwise uniform stream. Proper orthogonal decomposition suggests that increased jet penetration decreases the number of modes required for truncation in the investigated spanwise plane. Vortex identification algorithms are applied to the reconstructed flow fields, reaffirming that with increasing velocity ratio, the jets generate vortices of their own in similar statistical formations as the cylinders. This investigation provides a foundation to aid future modeling efforts toward characterizing flow physics of importance in designing and passively controlling transverse jets with varying blockage proximities in a crossflow.
The goal of this study is to investigate the interactions between turbulent kinetic, internal and magnetic energies in planar magnetohydrodynamic (MHD) jets at different regimes of Mach and Alfvén Mach numbers. Toward this end, temporal simulations of planar MHD jets are performed, using two types of initial fluctuating velocity field: (i) single velocity perturbation mode with a streamwise wavevector and (ii) random, isotropic perturbations over a band of wavevectors. At low Mach numbers, magnetic tension work results in a reversible exchange of energy between fluctuating velocity and magnetic fields. At high Alfvén Mach numbers, this exchange results in the equipartition of turbulent kinetic and magnetic energies. At higher Mach numbers, dilatational kinetic energy is (reversibly) exchanged with internal and magnetic energies, by means of pressure-dilatation and magnetic-pressure-dilatation, respectively. Therefore, at high Mach and Alfvén Mach numbers, dilatational kinetic energy is seen to be in equipartition with the sum of turbulent internal and magnetic energies. In each of the regimes, the consequent effect of the interactions on the background Kelvin-Helmholtz vortex evolution is also identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.