When a high-speed water jet is injected into water through a nozzle, cavitation is generated in the nozzle and/or shear layer around the jet. A jet with cavitation is called a “cavitating jet”. When the cavitating jet is injected into a surface, cavitation is collapsed, producing impacts. Although cavitation impacts are harmful to hydraulic machinery, impacts produced by cavitating jets are utilized for cleaning, drilling and cavitation peening, which is a mechanical surface treatment to improve the fatigue strength of metallic materials in the same way as shot peening. When a cavitating jet is optimized, the peening intensity of the cavitating jet is larger than that of water jet peening, in which water column impacts are used. In order to optimize the cavitating jet, an understanding of the instabilities of the cavitating jet is required. In the present review, the unsteady behavior of vortex cavitation is visualized, and key parameters such as injection pressure, cavitation number and sound velocity in cavitating flow field are discussed, then the estimation methods of the aggressive intensity of the jet are summarized.