In this chapter, theoretical analysis and electro-optical characterization of a fiber optic passive ring resonator interferometer (FOPRRI) were realized. First, a theoretical description and analysis of all-pass and add-drop filter configurations were performed, hence obtaining their respective transfer function, taking into account, the physical properties of a standard single-mode optical fiber as resonator constitutive material. Second, computational numerical simulations of a typical FOPRRI were performed with different analysis methods: effective index method (EIM), coupled mode theory (CMT), finite element method (FEM) and finite difference time domain (FDTD). Third, a comparative analysis of the results obtained with these methods is realized, showing the most accurate and appropriate for filter electro-optical characterization as a consequence. Last, and as an ultimate step, taking as reference the previously obtained electro-optical characterization for both configurations, the main applications are derived.