Unrevealing local magnetic and electronic correlations in the vicinity of charge carriers is crucial in order to understand rich physical properties in correlated electron systems. Here, using high-energy optical conductivity (up to 35 eV) as a function of temperature and polarization, we observe a surprisingly strong spin polarization of the local spin singlet with enhanced ferromagnetic correlations between Cu spins near the doped holes in lightly hole-doped La 1.95 Sr 0.05 Cu 0.95 Zn 0.05 O 4 . The changes of the local spin polarization manifest strongly in the temperature-dependent optical conductivity at ~7.2 eV, with an anomaly at the magnetic stripe phase (~25K), accompanied by anomalous spectral-weight transfer in a broad energy range. Supported by theoretical calculations, we also assign high-energy optical transitions and their corresponding temperature dependence, particularly at ~2.5eV, ~8.7eV, ~9.7eV, ~11.3eV and ~21.8 eV. Our result shows the importance of a strong mixture of spin singlet and triplet states in hole-doped cuprates and demonstrates a new strategy to probe local magnetic correlations using highenergy optical conductivity in correlated electron systems.