Hardness is a critical mechanical property of cutting tools, which significantly affects the cutting performance and wear resistance. Therefore, it is of great significance to obtain the hardness of the tool surface accurately. This paper presents a method based on finite element method (FEM) for studying the hardness of carbide tools. The microstructure of the carbide tool is obtained by scanning electron microscope(SEM). Combined with stereo principle, and secondary treatment, a three-dimensional multi-crystal model of carbide tool and indentation is established, and the model and hardness value obtained by different calculation methods are verified by microhardness test. The results show that the real hardness of the cemented carbide tool can be obtained by the indentation FEM model. The hardness values of cemented carbide tools are then calculated by the traditional method, Oliver-Pharr (OP) method and indentation method, respectively. It is found that the hardness value of the traditional method is the largest and fluctuates greatly, while the hardness values calculated by the OP method and indentation method are similar, and the fluctuation range of the hardness value calculated by the OP method is larger. In conclusion, the hardness calculated by the indentation work method is the best.