The object of research is the control of the process of formation of a spraying air flow and the transfer of particles of liquid metal from electrodes during arc spraying. One of the problem areas of the arc spraying process is the oxidation of the sprayed metal particles by the oxygen of the air flow during their transportation to the sprayed surface. This leads to the formation of a sufficiently large amount of oxides of chemical elements, which significantly deteriorate the adhesion strength and burn out alloying elements that are necessary to obtain a wear-resistant and corrosion-resistant coating. The suitability and durability of coatings during use depends on the strength of adhesion to the substrate.
In the course of the study, methods were used to determine the adhesion strength of the coating to the base – the Steffens method and methods for studying the microstructure of coatings were taken as the basis. The data was processed and dependencies were plotted.
The proposed method makes it possible to improve the quality of the resulting coating in terms of such an indicator as improvements in chemical composition. And also to influence the chemical composition by controlling the process of transfer of molten metal using a pulsating air flow.
The obtained results of approbation of the method allow us to consider it effective, as evidenced by the quality of the obtained coatings. This is due to the fact that the correctness of the formulation and solution of the problem provided adequate results. In contrast to the existing methods, the proposed one makes it possible to significantly influence the amount of harmful oxygen involved in the formation of a sprayed coating, which makes it possible to obtain a sprayed layer with the required performance characteristics. And also allows to improve its quality without significant capital costs. In addition, the issues of resource and energy saving are being addressed, since the burnout of chemical elements decreases and the air consumption during arc metallization decreases. To solve this problem, a simple design of the pulsator is proposed, which provides the ability to control the spray flow by adjusting the level of overlapping of the holes.