Ultrathin Cu films deposited on a metal substrate have been used as a model system to understand the structure−function relationship in electrocatalysis, heterogeneous catalysis, and microelectronics. The stability of ultrathin Cu films against oxidation has been of particular interest, but there is a lack of microscopic understanding. We report here an atomic-level study on the thicknessdependent oxidation kinetics of Cu layers on Au(111), from ultrahigh vacuum to near ambient conditions. Ultrathin Cu films on Au(111) were found to exhibit a superior oxidation resistance over Cu(111), and their oxidation resistances increase in the order of Cu(111) < 2.4 ML Cu < 0.4 ML Cu. For 0.4 ML Cu, the spontaneous subsurface diffusion of Cu at 300 K and the formation of a Au-rich surface alloy inhibit the formation of copper oxides at the O 2 pressure below 10 −4 mbar. However, at near ambient conditions, 0.4 ML Cu would be partially oxidized to the CuO phase directly. In contrast, multilayer Cu or bulk Cu(111), though oxidized more rapidly, forms only Cu 2 O surface layers under the same oxidation conditions. We analyzed further the atomic process of alloying at elevated temperatures. An intermediate Au 3 Cu alloy phase was suggested at the subsurface at 400 K. The diffusion of Cu into bulk Au(111) at 600 K prevents the formation of copper oxides at 300 K even under near-ambient conditions. Our study could thus provide insight for the rational design of a highly efficient Cu-based oxidation catalyst.