Complex interactions among hosts, pathogens, and the environment affect the vulnerability of amphibians to the emergence of infectious diseases such as chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd). Boana curupi is a forest-dwelling amphibian endemic to the southern Atlantic Forest of South America, a severely fragmented region. Here, we evaluated whether abiotic factors (including air and water temperature, relative air humidity, and landscape) are correlated with chytrid infection intensity and prevalence in B. curupi. We found individuals infected with Bd in all populations sampled. Prevalence ranged from 25-86%, and the infection burden ranged from 1 to over 130000 zoospore genomic equivalents (g.e.) (mean ± SD: 4913 ± 18081 g.e.). The infection load differed among populations and was influenced by forest cover at scales of 100, 500, and 1000 m, with the highest infection rates recorded in areas with a higher proportion of forest cover. Our results suggest that the fungus is widely distributed in the populations of B. curupi in southern Brazil. Population and disease monitoring are necessary to better understand the relationships between host, pathogen, and environment, especially when, as in the case of B. curupi, threatened species are involved.