Among the various film preparation methods, electroplating is one of the simplest and most economical methods. However, it is challenging to collect a dense single Pd film through plating, owing to the accumulation of stress in the film during the process. Therefore, the characteristics of a single plated film have not been clearly identified, although pure Pd is widely used in metallic-hydrogen-purification membranes. In this study, stress concentration in film during preparation was reduced by optimizing the plating process, and a dense single flat film was successfully collected. No impurities were detected. Thus, a high-purity Pd film was prepared. Its surface texture was found to be significantly different from that of the rolled film, and several approximately 5 μm sized aggregates were observed on the surface. The plated film is reported to have mechanical properties superior to those of the rolled film, with twice the displacement and four times the breaking point strength. The hydrogen permeabilities of the plated film (5.4 × 10−9–1.1 × 10−8 mol·m−1·s−1·Pa−1/2 at 250–450 °C) were comparable to those of the rolled and reported films, indicating that the surface texture does not have a strong effect on hydrogen permeability. The results of this study promote the practical use of Pd-based membranes through electroplating.