microRNAs (miRNAs) and RNA binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate and the precise mechanisms of their coordination are not well understood. RNA binding proteins often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K Homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa- and asd-2, genetically interacted with all of the miRNA mutants tested, while other KH domain genes exhibited functional interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.