Efficient storage and conversion of renewable energies is of critical importance to the sustainable growth of human society. With its distinguishing features of high hydrogen content, high energy density, facile storage/transportation, and zero-carbon emission, ammonia has been recently considered as a promising energy carrier for long-term and large-scale energy storage. Under this scenario, the synthesis, storage, and utilization of ammonia are key components for the implementation of ammonia-mediated energy system. Being different from fossil fuels, renewable energies normally have intermittent and variable nature, and thus pose demands on the improvement of existing technologies and simultaneously the development of alternative methods and materials for ammonia synthesis and storage. The energy release from ammonia in an efficient manner, on the other hand, is vital to achieve a sustainable energy supply and complete the nitrogen circle. Herein, recent advances in the thermal-, electro-, plasma-, and photocatalytic ammonia synthesis, ammonia storage or separation, ammonia thermal/ electrochemical decomposition and conversion are summarized with the emphasis on the latest developments of new methods and materials (catalysts, electrodes, and sorbents) for these processes. The challenges and potential solutions are discussed.