Cyclooxygenase-2 (COX-2) expression is induced by mitogenic and proinflammatory factors. Its overexpression plays a causal role in inflammation and tumorigenesis. COX-2 expression is tightly regulated, but the mechanisms are largely unclear. Here we show the control of COX-2 expression by an endogenous tryptophan metabolite, 5-methoxytryptophan (5-MTP). By using comparative metabolomic analysis and enzyme-immunoassay, our results reveal that normal fibroblasts produce and release 5-MTP into the extracellular milieu whereas A549 and other cancer cells were defective in 5-MTP production. 5-MTP was synthesized from L-tryptophan via tryptophan hydroxylase-1 and hydroxyindole O-methyltransferase. 5-MTP blocked cancer cell COX-2 overexpression and suppressed A549 migration and invasion. Furthermore, i.p. infusion of 5-MTP reduced tumor growth and cancer metastasis in a murine xenograft tumor model. We conclude that 5-MTP synthesis represents a mechanism for endogenous control of COX-2 overexpression and is a valuable lead for new anti-cancer and anti-inflammatory drug development.tumor suppression | tryptophan metabolism | inflammation control C yclooxygenase-2 (COX-2) is a rate-limiting enzyme in the production of diverse prostanoids with potent biological activities. It is involved in multiple physiological functions and triggers key pathological processes, such as tumorigenesis and inflammation (1, 2). COX-2 is constitutively overexpressed in a wide variety of human cancers and is enhanced by proinflammatory stimuli (3, 4). There is convincing evidence for a causal role of COX-2 in tumorigenesis. Inhibition of COX-2 activities was reported to control human colorectal cancer (5-8). COX-2 induces tumorigenesis by promoting important cellular functions including cell proliferation, migration, and resistance to apoptosis (9-11). The induced COX-2 expression by proinflammatory and mitogenic factors in normal cells is tightly controlled (12) whereas its overexpression in cancer cells is attributed to dysregulated transcription (13). The endogenous control mechanisms for COX-2 expression in normal cells and the mechanisms underlying the dysregulation in cancer cells are poorly understood. We previously identified in the conditioned medium of human fibroblasts small molecules (named cytoguardins) that suppress COX-2 expression induced by proinflammatory mediators (14). NMR analysis of a semipurified fraction revealed compounds with indole moieties (14). However, the exact chemical structures remain elusive. In this study, we elucidated the structure of cytoguardins by comparing the metabolomic profiles between normal and cancer cells.
ResultsCytoguardins Inhibit Cancer Cell COX-2. To determine that fibroblast factors are capable of suppressing cancer cell COX-2 expression, we cocultured human Hs68 foreskin fibroblasts (HsFb) with A549 lung cancer cells in a Boyden chamber for 24 h. A549 cells were removed and treated with phorbol 12-myristate 13-acetate (PMA) for 4 h, and COX-2 proteins were analyzed. HsFb suppressed A549 ...