Abstract-Turbo codes have recently been considered for energy-constrained wireless communication applications, since they facilitate a low transmission energy consumption. However, in order to reduce the overall energy consumption, Look-Up- Table-Log-BCJR (LUT-Log-BCJR) architectures having a low processing energy consumption are required. In this paper, we decompose the LUT-Log-BCJR architecture into its most fundamental Add Compare Select (ACS) operations and perform them using a novel low-complexity ACS unit. We demonstrate that our architecture employs an order of magnitude fewer gates than the most recent LUT-Log-BCJR architectures, facilitating a 71% energy consumption reduction. Compared to state-of-the-art Maximum Logarithmic Bahl-Cocke-Jelinek-Raviv (Max-Log-BCJR) implementations, our approach facilitates a 10% reduction in the overall energy consumption at ranges above 58 m.