Bismaleimide (BMI) resin is an excellent performance resin, mainly due to its resistance to the effect of heat and its insulating properties. However, its lack of toughness as a cured product hampers its application in printed circuit boards (PCBs). Herein, a branched structure via Michael addition was introduced to a BMI system to reinforce its toughness. Compared with a pure BMI sample, the flexural strength of the modified BMI was enhanced, and its maximum value of 189 MPa increased by 216%. The flexural modulus of the cured sample reached 5.2 GPa. Using a scanning electron microscope, the fracture surfaces of BMI samples and a transition from brittle fracture to ductile fracture were observed. Furthermore, both the dielectric constant and the dielectric loss of the cured resin decreased. The breakdown field strength was raised to 37.8 kV/mm and the volume resistivity was improved to varying degrees. Consequently, the resulting modified BMI resin has the potential for wide application in high-frequency and low-dielectric resin substrates, and the modified BMI resin with a structure including three different diamines can meet the needs of various applications.