We present a case study on Eu 3+ -doped Y 2 O 3 transparent ceramics in which high-resolution laser spectroscopy is used as a material characterization tool. By comparing the results from coherent and incoherent optical spectroscopy with other characterization methods, we show that optical techniques can deliver supplementary information about the local environment of the activator ions in materials. Thus, high-resolution spectroscopy may be of interest for the investigation of a wider range of rare earth doped optical materials beyond materials studied for quantum information technology. The refinement of optical spectroscopy for the study of narrow optical transitions in rare earth ion single crystals has demonstrated that these techniques are extremely sensitive tools for probing the local environment of the rare earth ion. These techniques, such as photon echo experiments, have been important in developing materials for quantum information technology and spectral filtering applications. Here, we apply these techniques to transparent ceramic samples and compare the results with information gained from conventional material characterization techniques. Our present study demonstrates the high sensitivity of laser spectroscopic methods to microstructural strain and the presence of defects. In particular, the sensitivity is sufficient to detect small changes introduced by different thermal treatments in nominally equivalent materials. The results of our work show that it is possible to relate highresolution optical measurements to defects and microstructural strain.