2018
DOI: 10.1016/j.apgeochem.2017.07.007
|View full text |Cite
|
Sign up to set email alerts
|

High variation topsoil pollution forecasting in the Russian Subarctic: Using artificial neural networks combined with residual kriging

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
22
2
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
2
2

Relationship

1
9

Authors

Journals

citations
Cited by 58 publications
(25 citation statements)
references
References 29 publications
0
22
2
1
Order By: Relevance
“…Первый, обучающий, традиционно вклю-чающий большую часть данных (в нашем случае первые 168 отсчетов), использован для обучения сети. На основании нашего опыта и работ других авторов оптимальным соотношением обучающей и тестовой подвыборок является 70:30 [21][22][23][24][25][26][27]…”
Section: материалы и методыunclassified
“…Первый, обучающий, традиционно вклю-чающий большую часть данных (в нашем случае первые 168 отсчетов), использован для обучения сети. На основании нашего опыта и работ других авторов оптимальным соотношением обучающей и тестовой подвыборок является 70:30 [21][22][23][24][25][26][27]…”
Section: материалы и методыunclassified
“…The combination of different approaches makes it possible to improve the accuracy of forecasting. For example, hybrids ANN and kriging have been used successfully in studies [16]- [18].…”
Section: -1mentioning
confidence: 99%
“…After the re-design to predict quantitative outputs and solve regression problems, this algorithm came to be the support vector machine for regression (SVR) and acquired wide successes in stand volume modeling [19,20]. Hybrid approaches involve either the statistical regression or machine learning model between the target variable and remote sensing predictors, interpolating residuals of predictions by kriging, and combining them [21][22][23]. Those two-step approaches both consider the spatial heterogeneity conveyed by remote sensing predictors and autocorrelation of neighboring observed data [24,25].…”
Section: Introductionmentioning
confidence: 99%