Both music and endpoint knowledge of exercise have been shown to independently influence exercise performance. However, whether these factors work as synergists or counteract one another during exercise is unknown. The purpose of this study was to determine the single and combined effect of listening to preferred music and types of endpoint knowledge on repeated countermovement jump (CMJ) test performance. Twenty-four (n = 24) current or previously competitive basketball players underwent CMJ testing under the following endpoint knowledge conditions: (1) unknown/no knowledge, (2) knowledge of the number of jumps, and (3) knowledge of exercise duration. For each of these, participants listened to either their preferred music or no music during the duration of testing. For the exercise portion, participants completed repeated CMJs where participants were encouraged to jump as high as possible with jump height, contact time, and flight time as outcomes. Rate of perceived exertion (RPE) and feeling scale were measured before and after exercise. The results showed that, regardless of knowledge type, preferred music resulted in a significant decrease in both contact time and flight time (F ≥ 10.4, p ≤ 0.004, and ηp2 ≥ 0.35), and a significant improvement of jump height (F = 11.36, p = 0.001, and ηp2 = 0.09) and feeling scale ratings (F = 36.9, p < 0.001, and ηp2 = 0.66) compared to no-music condition, while RPE was not significantly affected. Regardless of the presence of music, knowledge of the number of jumps and duration resulted in lower contact time (p < 0.001, 0.9 < d < 1.56) versus unknown condition during CMJs. Moreover, a significant decrease in RPE values was found during prior endpoint knowledge of number (p = 0.005; d = 0.72) and duration (p = 0.045; d = 0.63) compared to unknown condition. However, feeling scale ratings were not significantly affected. Moreover, no interactions with significance findings were found for any parameters. Overall, data suggest that listening to music and endpoint knowledge alter exercise responses in basketball players, but they do not interact with one another.