Abstract:Although silicon (Si) currently dominates the semiconductor industry, its small 1.1 eV band gap limits its maximum operating temperature, which restricts its use in high-temperature, high-power devices. Gallium nitride (GaN) is an attractive semiconductor with its wide bandgap (3.4 eV), high electron mobility (1700 cm2/Vs), high electron saturation velocity (3 x 107 cm/s), large critical breakdown field (2 MV/cm), and thermal stability. The high-power capabilities of GaN allow for a reduction in device size, w… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.